\qquad

Problem Solving（http：／／goo．gl／rTOmcL）
Essential Academic Skill Enhancement（EASE）workshop series

This workshop reviews the basics of algebra through pre－calculus to help prepare you for college calculus．

We will discuss word problems resulting in：

－Rational Equations
－Radical Equations
－Simple Exponents
－Not－So－Simple Exponents（Logs）
－Quadratic Equations
－Trigonometry
－Composite Functions
－Lines
－Domain \＆Range

Assessment：

1．Jennifer works part－time at an electronics store and gets paid $\$ 8 /$ hour．During a holiday week，Jennifer will make $\$ 20$ just for being an employee（even if she doesn＇t work）．During this week，she can work up to 36 hours．The amount of money she can make during this holiday week is a function of how many hours，h ，she works．Find the domain and range of the function．

2．In your UNM College Algebra class there is a total of 800 possible points．These points come from 10 homework sets that are worth 10 points each， 10 Quizzes worth 10 points each， 4 exams worth 100 points each，and a cumulative final exam worth 200 points．Suppose you have a homework average of $98 / 100$ points，your quiz average is $89 / 100$ points and you have exam grades of $97,85,88$ ，and 94．What do you need to get on the final exam to get an A for the course？（Assume an A is 93% or higher of the total possible 800 points）．
\qquad
3. Earthquake intensity is measured by the Richter scale. The formula for the Richter rating of a given quake is given by " $R=\log \left[I \div I_{0}\right]$," where I_{0} is the "threshold quake," or movement that can barely be detected, and the intensity I is given in terms of multiples of that threshold intensity.

You have a seismograph set up at home, and see that there was an event while you were out that had an intensity of $\mathrm{I}=989 I_{0}$. Given that a heavy truck rumbling by can cause a microquake with a Richter rating of up to 3.5 , and "moderate" quakes have a Richter rating of 4 or more, what was likely the event that occurred while you were out?
4. A baseball is hit and its height in feet, t seconds later, can be approximated by $h=-16 t^{2}+40 t+4$. When does the ball hit the ground? (Hint: the height of the ball on the ground is zero; $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$)
\qquad
5. The speed of a tsunami (tidal wave) can travel is modeled by the equation " $S=356 \sqrt{d}$," where S is the speed in kilometers per hour and d is the average depth of the water in kilometers. A tsunami is found to be traveling at 120 kilometers per hour.
What is the average depth of the water? (Round to 3 decimal places.)
Do you think this would pose a major threat to nearby cities? $(1 \mathrm{~km} \approx 3281 \mathrm{ft} ; 100 \mathrm{ft} \approx 0.03 \mathrm{~km})$
6. The pressure p experienced by a diver under water is related to the diver's depth d by an equation of the form $p=k d+1$ (k a constant $)$. When $d=0$ meters, the pressure is 1 atmosphere. The pressure at 100 meters is 10.94 atmospheres. Find the pressure at 50 meters.
7. What if a restaurant needed to build a wheelchair ramp for its customers? The angle of elevation for a ramp is recommended to be 5 degrees. If the vertical distance from the sidewalk to the front door is two feet, what is the horizontal distance that the ramp will take up (x) ? How long will the ramp be (y) ? Round your answers to the nearest hundredth.
\qquad
8. You drink a beverage with 120 mg of caffeine. Each hour, the caffeine in your system decreases by about 12%. How long until you have 10 mg of caffeine? The standard equation for rate of growth/decay is: $A=a_{o}(1 \pm r)^{t}$; where $a_{-} o=$ the initial amount; $r=$ the percent of increase per time period; $t=$ the number of time periods; and $A=$ the total amount after t time periods.
9. The number N of bacteria in a refrigerated food is given by: $N(T)=20 T^{2}-80 T+500,2 \leq T \leq 14$, where T is the temperature of the food in degrees Celsius. When the food is removed from the refrigeration, the temperature of the food is given by: $T(t)=4 t+2,0 \leq t \leq 3$, where t is the time in hours.
Find the time when the bacteria count reaches 2000 .

