

STEM Gateway Contact Information...

TIM SCHROEDER

Project Director
STEM Gateway Program
University of New Mexico
timschroeder@unm.edu
505-277-1761

http://unmstemgateway.blogspot.com/

RESEARCH Tab, or IMPACT Tab > Presentations (LONG VERSION includes additional data and analysis)

PART 1: UNM RESEARCH INTO STEM STUDENT ACHIEVEMENT

MISSION OF STEM GATEWAY:

- Improve STEM instruction and student support at the University of New Mexico
- Improve STEM graduation rates among Hispanic and/or low-income students

GRANT OVERVIEW:

- Funded by US Depart of Education Hispanic Serving Institution STEM Program
- \$3.8 million over five years
- October 2011 through September 2016

Project Team

- Patrick Coulombe, Graduate Assistant, STEM Gateway, University of New Mexico
- Vicky Dueer, Senior Institutional Researcher (former STEM Gateway Institutional Researcher), University of New Mexico
- Phil Handwerk, Office of Institutional Analytics, University of New Mexico
- Heidi Rodenbeck, STEM Institutional Researcher, Office of Institutional Analytics
- Danielle Rudder, Graduate Assistant, STEM Gateway, University of New Mexico
- Tim Schroeder, Project Director, STEM Gateway
- Gary Smith, Principal Investigator, STEM Gateway, University of New Mexico
- Terry Turner, Office of Institutional Analytics, University of New Mexico

OUR GOAL IS TO STUDY THE UNM STEM
UNDERGRADUATE STUDENT EXPERIENCE FROM
BEGINNING TO END, AND WITH A REASONABLE
EXPECTATION OF A MAXIMUM SIX YEAR TIME TO
GRADUATION.

This information will be used to improve the STEM education experience at UNM.

This data should not be used to blame departments or individuals in any way. Our data does not go deep enough to draw such conclusions.

Definition of STEM

For the purpose of this study, STEM (Science, Technology, Engineering and Mathematics) degrees are defined narrowly as those bachelor's degrees within the following disciplines: astrophysics, biology, biochemistry, chemistry, computer science, earth & planetary sciences, engineering (all majors), environmental science, mathematics, physics, and statistics.

Research Questions

Explores STEM degree completion patterns at UNM through two primary lenses:

Degree outcomes. How do undergraduate students who graduate with STEM degrees differ from those who switch majors out of STEM, and from those who stop attending UNM prior to completing their degrees?

Course outcomes. How do undergraduate STEM students perform in the core math & science gateway courses that lead into their STEM degrees?

For both of these lenses, we studied:

- 1503 **first-time full-time freshmen** students from the falls of 2005, 2006 and 2007 ...
- who initially stated they were interested in STEM degrees ...
- representing 16.6% of the freshman population during these three fall semesters.

These students indicated an interest in STEM majors when completing their admissions applications, or when visiting with academic advisors during their first semesters.

DEGREE OUTCOMES LENS

Student Outcomes

This portion of the study seeks to identify patterns regarding four subsets of STEM students from the 2005, 2006 and 2007 cohorts as described above:

- ENROLLED: Students who are still enrolled in courses at UNM, and who indicate that as of Fall 2012 they were still working towards STEM degrees.
- **GRADUATED:** Students who graduated with STEM degrees prior to the Fall 2012 semester.
- SHIFTED: Students who switched out of STEM areas, but who continued taking courses at UNM. These students may or may not have graduated with degrees in non-STEM disciplines.
- STOPPED: Students who stopped attending courses at UNM.

Table 1. Overview of Population			
Total Number of Students	1503		
Number of students who changed majors out of STEM (SHIFTED)	639 (42.5%)		
Number of students who graduated with STEM degrees (GRADUATED)	334 (22.2%)		
Number of students who stopped attending UNM (STOPPED)	444 (29.6%)		
Number of students still enrolled at UNM (ENROLLED)	86 (5.7%)		

DEGREE OUTCOMES LENS

Variables

This study attempts to define patterns related to each group that could help UNM identify for whom the status quo is working best and for whom we most need to redesign the ways that we teach and support students. In exploring these patterns, we considered the following student variables:

- Ethnicity
- Gender
- Pell eligibility and median estimated family contribution (family income level)
- Lottery scholarship status
- First generation college student status
- Average high school GPA
- Average ACT scores
- ACT scores and high school GPAs correlated to account for possible grade inflation
- Cumulative college GPA at most recent semester completed
- Average number of semesters taken to matriculate into a STEM program
- · Average number of remedial courses completed
- Number of credit hours completed at the time of shifting out of STEM (for "shifted" and "stopped" subgroups only)
- Number of semesters completed at the time of shifting out of STEM (for "shifted" and "stopped" subgroups only)
- Cumulative UNM GPA when shifting out of STEM (for "shifted" and "stopped" subgroups only)

COURSE OUTCOMES LENS

Overview

This portion of the study attempts to understand the impact of core gateway courses (courses that serve as gateway experiences to STEM degree programs) on STEM degree achievement.

- Each course was studied collectively, and was not broken out by section or instructor.
- Grade distribution patterns were collected only for students/enrollments who fit the "Population Description / Definitions" section above.

COURSE OUTCOMES LENS

Definition for STEM Gateway Courses

For purposes of the STEM Gateway Title V Program, STEM Gateway Courses are defined as those which meet at least one of the following criteria:

- Entry level (100 and 200 level) program-requirement courses that lead to degrees in the approved STEM disciplines
- Companion courses (labs, problem solving courses, etc) that are connected to Core Requirement or Program
 Requirement courses (as specified above)
- Pre-requisite courses that are required by students to take Core Requirement or Program Requirement courses (as specified above)
- Large-enrollment (>500 students/year) courses required for degrees in the approved STEM disciplines and typically taken within the first two years in the field.

GATEWAY COURSES STUDIED

BIO	201	Molecular Cell Biology
BIO	202	Genetics
BIO	203	Ecology and Evolution
CHEM	121	General Chemistry I
CHEM	122	General Chemistry II
CHEM	123	General Chemistry I LAB
CHEM	124	General Chemistry II LAB
CHEM	301	Organic Chemistry
CHEM	302	Organic Chemistry
CHEM	303	Organic Chemistry LAB
CHEM	304	Organic Chemistry LAB
CS	152	Computer Programming Fundamentals
ECE	131	Program Fundamentals
ENVS	101	The Blue Planet
ENVS	102	The Blue Planet LAB
EPS	101	Intro Geology, How Earth Works
EPS	105	Physical Geology LAB
EPS	201	Earth History

GATEWAY COURSES STUDIED, continued

MATH	107	Problems in College Algebra
MATH	110	Problems in Elementary Calculus
MATH	120	Intermediate Algebra
MATH	121	College Algebra
MATH	123	Trigonometry
MATH	150	Pre-Calculus Math
MATH	162	Calculus I
MATH	163	Calculus II
MATH	180	Elements of Calculus I
MATH	181	Elements of Calculus II
PHYC	151	General Physics
PHYC	151L	General Physics LAB
PHYC	152	General Physics
PHYC	152L	General Physics LAB
PHYC	157	Problems in General Physics
PHYC	158	Problems in General Physics
PHYC	160	General Physics
PHYC	160L	General Physics LAB
PHYC	161	General Physics
PHYC	161L	General Physics LAB
PHYC	167	Problems in General Physics
PHYC	168	Problems in General Physics

Ethnicities in Students Opting to Go Into STEM

		THIS POPULATION OF STEM STUDENTS	THE GENERAL POPULATION OF FRESHMEN ONLY FROM UNM FACTBOOKS (Falls 05,06,07 combined)
	Percent American Indian	6.4%	5.27%
	Percent Asian/Pacific Islander/Native Hawaiian	5.5%	4.22%
	Percent Black/African American	2.3%	3.29%
	Percent Hispanic	35.5%	37.6%
ľ	Percent White, Non-Hispanic	46.2%	45.45%
	Percent Male	62.3%	Not available 44.4% of general population of all UNM Main campus students
	Percent Female	37.7%	Not available 55.6% of general population of all UNM Main campus students

Ethnicities in <u>Degree Outcomes</u>

	Stopped	Graduated	Enrolled	Shifted	
American Indian	48	8	4	36	96
Asian/Pacific Islander	17	25	6	33	81
Black/African American	7	7	0	20	34
Hispanic	169	94	41	229	533
Non-Resident Alien	0	1	1	0	2
Native Hawaiian	2	0	0	0	2
Race/Ethnicity unknown	15	17	7	22	61
White, non-Hispanic	186	182	27	299	694
	444	334	86	639	1503

Ethnicities in <u>Degree Outcomes</u>

Group within each ethnicity

	Stopped	Graduated	Enrolled	Shifted	
American Indian	50.0%	8.3%	4.2%	37.5%	100.0%
Asian/Pacific Islander	21.0%	30.9%	7.4%	40.7%	100.0%
Black/African American	20.6%	20.6%	0.0%	58.8%	100.0%
Hispanic	31.7%	17.6%	7.7%	43.0%	100.0%
Non-Resident Alien	0.0%	50.0%	50.0%	0.0%	100.0%
Native Hawaiian	100.0%	0.0%	0.0%	0.0%	100.0%
Race/Ethnicity unknown	24.6%	27.9%	11.5%	36.1%	100.0%
White, non-Hispanic	26.8%	26.2%	3.9%	43.1%	100.0%

Ethnicities in <u>Degree Outcomes</u>

American Indian STEM students are 2.55 times as likely to stop attending UNM (p<.001) and are 0.30 times as likely to graduate with STEM degrees (p<.001) as non-American Indian students.

	ODDS RATIO	P-VALUE
STOPPED	2.55	< .001
SHIFTED	0.80	.338
GRADUATED	0.30	< .001

Ethnicities in <u>Degree Outcomes</u>

Hispanic STEM students are .65 times as likely to graduate with STEM degrees than non-Hispanic students (p=.001).

	ODDS RATIO	P-VALUE
STOPPED	1.17	.175
SHIFTED	1.03	.827
GRADUATED	0.65	.001

Ethnicities in <u>Degree Outcomes</u>

Black/African American STEM students are 1.96 times as likely to switch majors out of STEM than non-African American students (p=.001).

	ODDS RATIO	P-VALUE
STOPPED	0.61	.341
SHIFTED	1.96	.055
GRADUATED	0.91	> .999

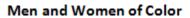
SES in <u>Degree Outcomes</u>

Pell-Eligible STEM students are 1.43 times as likely to stop attending UNM (p=.007) and are .46 times as likely to graduate (p<.001) than non-Pell-eligible students.

First Generation STEM students are 1.62 times as likely to stop attending UNM (p<.001) and are .42 times as likely to graduate (p<.001) than non-First Generation students.

PELL ELIGIBLE	ODDS RATIO	P-VALUE
STOPPED	1.43	.007
SHIFTED	1.10	.456
GRADUATED	0.46	< .001
ENROLLED	1.34	.234

FIRST GENERATION	ODDS RATIO	P-VALUE
STOPPED	1.62	< .001
SHIFTED	1.12	.380
GRADUATED	0.42	< .001


Gender in Degree Outcomes

Female STEM students are .48 times as likely to pursue STEM degrees (p,.001), and are 1.36 times as likely to switch majors out of STEM (p=.005) than male students.

	ODDS RATIO	P-VALUE
STOPPED	0.88	.294
SHIFTED	1.36	.005
GRADUATED	0.89	.406

	Stopped	Graduated	Shifted	Enrolled	Total
White Male	126	114	176	23	439
Non-White Male	160	101	196	41	498
White Female	60	68	123	4	255
Non-White Female	98	51	144	18	311
Total	444	334	639	86	1503

	Stopped	Graduated	Shifted	Enrolled	Total
White Male	28.7%	26.0%	40.1%	5.2%	100.0%
Non-White Male	32.1%	20.3%	39.4%	8.2%	100.0%
White Female	23.5%	26.7%	48.2%	1.6%	100.0%
Non-White Female	31.5%	16.4%	46.3%	5.8%	100.0%
Total	29.5%	22.2%	42.5%	5.7%	100.0%

Odds Ratios (Significance)

	Stopped	Graduated	Shifted	Enrolled
White Male	0.94 (0.664)	1.35 (0.029)	0.87 (0.229)	0.88 (0.714)
Non-White Male	1.20 (0.133)	0.84 (0.211)	0.82 (0.086)	1.91 (0.004)
White Female	0.69 (0.024)	1.34 (0.069)	1.32 (0.044)	0.23 (0.001)
Non-White Female	1.12 (0.403)	0.63 (0.006)	1.21 (0.139)	1.02 (1.000)

Gender in <u>Degree Outcomes</u>

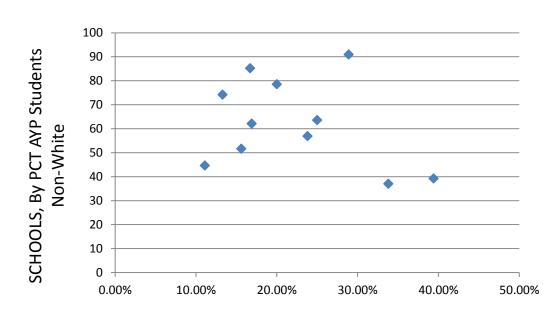
White females are .69 times as likely to stop attending (p=.024), 1.34 times more likely to graduate (p=.069), 1.32 times as likely to switch majors out of STEM (p=.044) and .23 times as likely to still be enrolled as students who are not white females (p=.001)

Non-white females are .63 times as likely to graduate as students who are not non-white females (p=.006).

Gender in Degree Outcomes

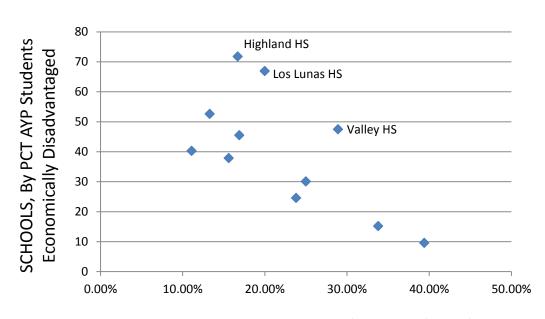
White males are 1.35 times as likely to graduate than students who are not white males (p=.029).

Non-white males are .82 times as likely to shift out of STEM degrees (p=.086) and are 1.91 times as likely to still be enrolled than students who are not non-white males (p=.004).



High School Origin in <u>Degree Outcomes</u>

HIGH SCHOOL NAME	UNM STUDENTS	GRADUATED	AYP Students PCT Non- White	AYP Students PCT Econ Disadvant
MORIARTY HIGH SCHOOL	27	11.1%	44.6	40.3
DEL NORTE HIGH SCHOOL	45	13.3%	74.2	52.6
RIO RANCHO HIGH SCHOOL	90	15.6%	51.6	37.9
HIGHLAND HIGH SCHOOL	36	16.7%	85.2	71.8
MANZANO HIGH SCHOOL	59	16.9%	62.1	45.5
LOS LUNAS HIGH SCHOOL	25	20.0%	78.5	66.9
SANDIA HIGH SCHOOL	80	23.8%	56.9	24.6
CIBOLA HIGH SCHOOL	96	25.0%	63.6	30.1
VALLEY HIGH SCHOOL	38	28.9%	90.9	47.5
SAINT PIUS X HIGH SCHOOL	59	30.5%	na	Na
ELDORADO HIGH SCHOOL	80	33.8%	37.0	15.2
ALBUQUERQUE ACADEMY	26	38.5%	na	na
LA CUEVA HIGH SCHOOL	104	39.4%	39.2	9.6


High School Origin in <u>Degree Outcomes</u>

SCHOOLS, By PCT UNM Students Graduated from UNM with STEM

High School Origin in <u>Degree Outcomes</u>

SCHOOLS, By PCT UNM Students Graduated from UNM with STEM

UNM needs to do focus resources on recruiting women to STEM fields.

UNM needs to provide resources to connect STEM academic and support to the faculty, staff and departments who most understand the needs of Hispanic, American Indian, African American, Low-income, First-generation and Female students.

Possible Implications

UNM needs to improve instruction to better meet the learning needs of students who are Hispanic, American Indian, African American, Low-income, First-generation and Female.

INSTITUTIONAL PRIORITY OF OUTCOMES

Graduate STEM

Switch Majors

Stop Attending

PRIORITY OF OUTCOMES

Variables

VARIABLE	GRADUATE	SHIFT	STOP
Percent of this group who are Pell Eligible	13.5%	23.6%	27.3%
Average of High School GPAs within this group	3.75	3.45	3.27
Average of ACT Composite scores within this group	25.8	22.9	22.2
Average of ACT Math scores within this group	26.3	22.8	22.0
Percent of this group who are First Generation	19.5%	34.2%	40.6%
Average of College GPAs within this group	3.51	2.95	2.09

PRIORITY OF OUTCOMES

Variables

VARIABLE	GRADUATE	SHIFT	STOP
Percent of students in			
this group who	12%	30.7%	39.5%
required remediation			
Percent of students in			
this group who	4.2%	18.2%	26.4%
required MATH	4.270	10.270	20.470
remediation			
Percentage of students			
in this group who	91%	77.5%	36.9%
received a Lottery	32/3	77.1370	30.375
Scholarship			
Percentage of Lottery-			
receiving students in			
this group who lost	18.4%	28.7%	42.1%
their Lottery			
Scholarship			

PRIORITY OF OUTCOMES

ACT Scores

	Stopped vs. Not	Shifted vs. Not	Graduated vs. Not
	Stopped	Shifted	Graduated
ACT Composite	.03	.01	.09
ACT Math	.04	.01	.11
ACT English	.04	< .01	.08
ACT Reading	.03	< .01	.06
ACT Scientific	.04	< .01	.08
Reasoning			

Note. This table shows the proportion of variance explained by two-group distinctions in ACT scores. For example, the distinction between Stopped and Not Stopped accounts for about 4% of the variation in ACT-Math scores. Similarly, distinguishing between Shifted and Not Shifted students is effectively useless in trying to predict ACT scores, while the most useful distinction in predicting ACT scores is the one between Graduated and Not Graduated students.

Unanswered Questions

None of these numbers are surprising, since they often appear in the literature.

But how well do these factors, when combined to produce the most effective predictor, predict whether a student will graduate, shift or stop?

Stated another way, how much of the variance in student outcomes can be related to these factors that UNM routinely collects and reports?

TRIGGERPOINTS

Number of Credits

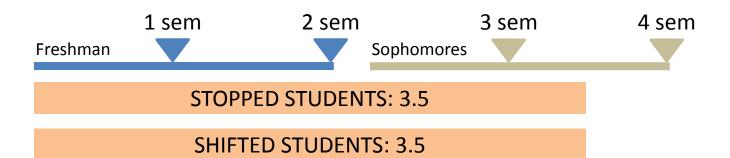
The average number of credits completed when STEM students stop attending UNM is 38.

The average number of credits completed when STEM students shift majors is 44.8.

15cr 30cr 45cr 60cr Sophomores

STOPPED STUDENTS: 38

SHIFTED STUDENTS: 44.8



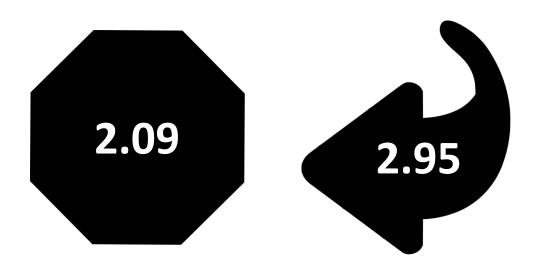
TRIGGERPOINTS

Number of Semesters

On average, STOPPED students leave UNM after 3.5 semesters.

On average, SHIFTED students changed majors after 3.5 semesters, the same as for STOPPED students.

Students who SHIFT appear to be taking more credits per semester than students who STOP.


Leaving STEM may be more related to the number of semesters completed than it is to the number of credits completed. If so, what are the implications?

TRIGGERPOINTS

Grade Point Average

On average, STOPPED students left UNM with an average cumulative GPA of 2.08. This is contrasted by SHIFTED students, who had an average 2.94 cumulative GPA when they changed majors.

Unanswered Questions

Does this imply that students who leave UNM may be heavily impacted by academic performance issues, while SHIFTED students may be less impacted by poor grades and more impacted by other factors?

SELECTED FINDINGS COURSE OUTCOMES LENS

ALL THE WAY TO "A" Overview

The "UNM Killer Course List" from Fall 2011 includes eighty two courses with high enrollments (121 and above) and low student pass rates.

STEM Gateway studied the grade distribution patterns for the following sixteen STEM-based courses on this list: MATH 120, 121, 123, 150, 162, 163, 180, 181; ENVS 101; CHEM 121, 122, 301, 302; BIOL 201, 202; PHYC 160. Taken together, these courses represent a sizable portion of the gateway courses that STEM students complete en route to their degrees.

	GRADUATED	SHIFTED	STOPPED
Percentage of enrollments in this group that resulted in an A, B or C	86.18%	65.33% (20.85 points lower than GRADUATED)	54.36% (31.82 points lower than GRADUATED)

ALL THE WAY TO "A" Grade Distribution Patterns

Comparing GRADUATED to SHIFTED									
	Α	В	С	D	F	WD	CR	NCR	ABC
Graduated	37.78	32.74	15.66	3.72	0.84	7.09	1.80	0.04	86.18
Shifted	15.19	26.05	24.09	10.88	4.73	15.68	1.55	1.60	65.33
Difference	22.59	6.69	-8.43	-7.16	-3.89	-8.58	0.25	-1.56	20.85
		Com	paring GF	RADUATE	D to SHIF	TED			
	Α	В	С	D	F	WD	CR	NCR	ABC
Graduated	37.78	32.74	15.66	3.72	0.84	7.09	1.80	0.04	86.18
Stopped	11.09	22.53	20.74	12.96	9.46	21.82	1.20	1.61	54.36
Difference	26.69	10.21	-5.08	-9.24	-8.61	-14.73	0.60	-1.58	31.82

Unanswered Questions

How much of this difference in "A" grades is actually a function of other factors (precollege preparation, ACT scores, etc)?

How would this same pattern hold in non-STEM disciplines?

Possible Implications

Colleges and universities often stress successful passing (A,B or C) as the desired course outcome for their students, and as a measure for their programs meeting student learning needs.

However, in STEM, it may be more important to stress **mastery** (in this case, as measured by "A" percentage) over passing or course completion.

In the table below, for each course category listed, we see the Graduation percentage for all enrollments from that category

					PCT	PCT	PCT
SUBJECT	N	GRAD	SHIFT	STOP	Grad	Shift	Stop
All Courses	9540	3475	3558	1470	36.43%	37.30%	15.41%
All Math Courses	3440	854	1523	693	24.83%	44.27%	20.15%
All Pre-Calc Math							
Courses	2044	309	1047	492	15.12%	51.22%	24.07%
All 100 Level Courses	7510	2451	2943	1288	32.64%	39.19%	17.15%
All <151 Level Courses	4359	1016	2016	878	23.31%	46.25%	20.14%
All 151-199 Level							
Courses	3151	1435	927	410	45.54%	29.42%	13.01%
All 200+ Level Courses	2030	1024	615	182	50.44%	30.30%	8.97%

Of the enrollments in this population from pre-calculus mathematics courses, only 15.12% led to STEM bachelors degrees at UNM.

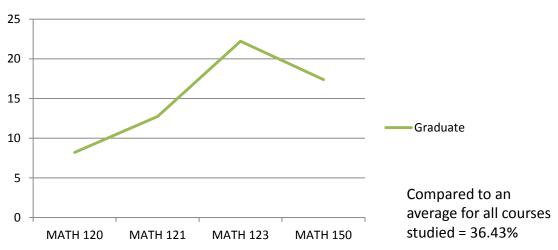
Of the enrollments in this population from STEM Gateway courses at the 150 level or lower, only 23.31% led to STEM bachelors degrees at UNM.

The FLIPSIDE: Of students who began at UNM as first-time freshmen, and who graduated with a STEM degree in 2010-2011...

Sub-population of students	Percent of these students who completed Intermediate Algebra at UNM	Percent of these students who completed College Algebra at UNM
All STEM degree recipients	18.5%	41.2%
All Engineering degree recipients	9.8%	21.3%
All Arts & Sciences (A&S) degree recipients	23%	51.5%
A&S: Biology degree recipients	27.8%	56.8%
A&S: Non-Biology degree recipients	12.2%	40%

Resources and strategies for keeping students engaged in STEM should be focused on mathematics courses and first-year STEM courses.

PRE-CALC MATH, ETHNICITY AND PELL-ELIGIBILITY


The following tables show grade distribution patterns for enrollments in our population for the four primary pre-cal math courses: Intermediate Algebra, College Algebra, Trigonometry and Pre-Calculus Mathematics.

Pre-Calc Math and Student Achievement

Percent of enrollments that resulted in the following outcomes...

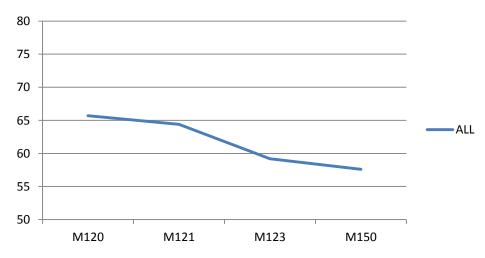
Student Outcome	MATH 120	MATH 120 MATH 121		MATH 150
Stop	25.82	21.89	24.01	26.25
Shift	59.62	57.95	39.25	44.59
Graduate	8.21	12.75	22.22	17.37
Enroll	6.33	7.40	14.32	11.77

Graduate

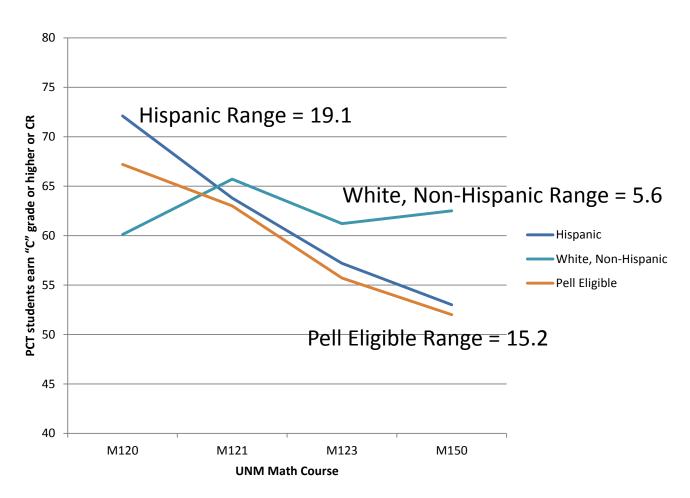
MATH 120, Intermediate Algebra									
Subpopulation	N at end of semester	Pct "A"	Pct "A-B-C-CR"						
Hispanic	188	14.8	72.1						
American Indian	45	8.9	50.0						
Asian / Pacific Islander	·		73.8						
Black / African American	18	16.7	72.2						
White, Non- Hispanic	145	23.1	60.1						
Pell-Eligible during first semester	136	17.3	67.2						

	MATH 121, College Algebra									
Í	Subpopulation	N at end of semester	Pct "A"	Pct "A-B-C"						
	Hispanic	252	9.9	63.8						
	American Indian	41	7.7	59.6						
	Asian / Pacific Islander	29	18.9	67.5						
	Black / African 16 American		31.6	57.9						
	White, Non- Hispanic	328	14.3	65.7						
	Pell-Eligible during first semester	198	13.8	63.0						

MATH 123, Trigonometry									
X	Subpopulation	N at end of semester	Pct "A"	Pct "A-B-C"					
	Hispanic	131	13.2	57.2					
	American Indian	29	5.7	48.5					
	Asian / Pacific Islander	·		59.1					
	Black / African 4 American		14.3	42.9					
	White, Non- Hispanic	198	18	61.2					
	Pell-Eligible during first semester	92	13.1	55.7					



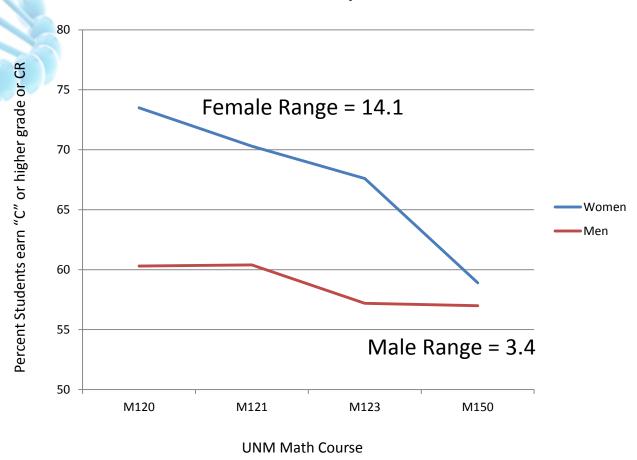
	MATH 150, Pre-Calc Math									
Á	Subpopulation	N at end of semester	Pct "A"	Pct "A-B-C"						
	Hispanic	184	12.2	53.0						
	American Indian	41	0.0	52.4						
	Asian / Pacific Islander	29	20.6	55.9						
	Black / African American	6	22.2	33.3						
	White, Non- Hispanic	231	14.7	62.5						
	Pell-Eligible during first semester	126	8.0	52.0						


Pre-Calc Math, All Students Combined

Subpopulation	bpopulation N at end of semester		Pct "A-B-C-CR"
MATH 120	426	15.4	65.7
MATH 121	635	12.9	64.4
MATH 123	405	15.4	59.2
MATH 150	518	13.4	57.6

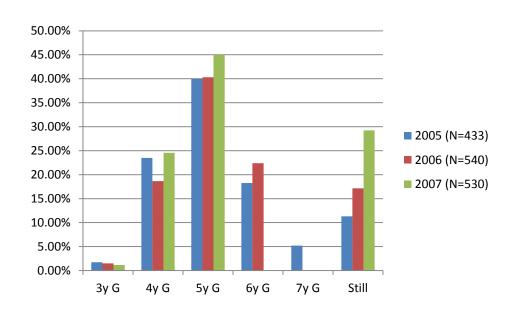
ALL STUDENTS COMBINED

Other ethnicities excluded from this chart because their "N" in one or more of these classes was too small to be considered conclusive.



Pre-Calc Math, Gender

						N	ИАТН 12	0					
		Α	В	С	D	F	W	I	CR	NCR	AU	TOTAL	ABC-CR
ì	F	22.5%	25.5%	7.0%	2.0%	0.0%	9.0%	0.0%	18.5%	15.5%	0.0%	100.0%	73.5%
	М	10.5%	22.0%	5.4%	4.4%	0.0%	17.3%	0.0%	22.4%	18.0%	0.0%	100.0%	60.3%
						N	ИАТН 12	1					
		Α	В	С	D	F	W	I	CR	NCR	AU	TOTAL	ABC
	F	17.4%	25.5%	27.4%	12.3%	0.6%	15.5%	0.0%	0.6%	0.3%	0.3%	100.0%	70.3%
	М	9.8%	22.6%	28.0%	18.8%	2.9%	16.6%	0.0%	0.4%	0.7%	0.2%	100.0%	60.4%
						N	ИАТН 12	3					
		Α	В	С	D	F	W	1	CR	NCR	AU	TOTAL	ABC
	F	18.6%	32.4%	16.7%	13.7%	1.0%	16.7%	0.0%	1.0%	0.0%	0.0%	100.0%	67.6%
	M	14.7%	18.0%	24.6%	12.3%	6.1%	24.3%	0.0%	0.0%	0.0%	0.0%	100.0%	57.2%
						N	ИАТН 15	0					
		Α	В	С	D	F	W	1	CR	NCR	AU	TOTAL	ABC
	F	17.9%	28.0%	13.1%	21.4%	4.2%	14.9%	0.0%	0.6%	0.0%	0.0%	100.0%	58.9%
	М	11.7%	20.4%	24.9%	20.6%	5.8%	15.9%	0.0%	0.2%	0.4%	0.0%	100.0%	57.0%



Pre-Calc Math, Gender

Time to Graduation for STEM at UNM

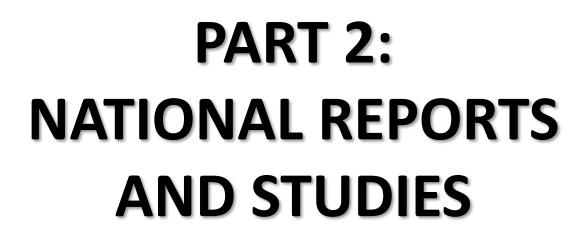
Unanswered Questions

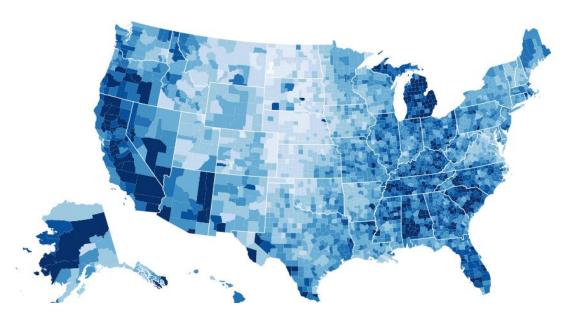
To what degree are Pell-eligibility and Hispanic ethnicity related?

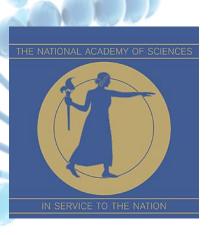
Why are Hispanic and Pell-eligible students decreasing in achievement as they proceed through the pre-calc math sequence at rates more pronounced than other subpopulations?

Quick Summary

- Degree programs make a difference in outcomes, but we do not yet understand how.
- Ethnicity is important to understanding STEM degree attainment.
- Gender is important to understanding STEM degree attainment.

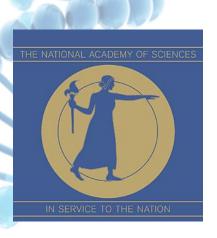

Quick Summary


- Traditionally collected institutional variables (such as high school GPA) do align with student outcomes, but we do not yet know the ability of these to predict student achievement.
- Students stop attending and shift majors at roughly the same number of semesters, though major switchers collect more credits en route to that point than stoppers.
- Major switchers leave STEM at a "B" average, while stoppers leave UNM at a "C" average.



Quick Summary

- In STEM Gateway "killer courses" the greatest difference between graduating students and non-graduating students are at the "A" range.
- STEM-interested students who take pre-calculus mathematics course are unlikely to graduate with STEM degrees at UNM.
- Hispanic students and Pell-eligible students are less successful in pre-calculus math the further in they go.



NATIONAL ACADEMY OF SCIENCES The Gathering Storm, 2005 Rising Above the Gathering Storm, 2010

RECOMMENDATIONS

What are the top 10 actions, in priority order, that federal policymakers could take to enhance the science and technology enterprise so that the United States can successfully compete, prosper, and be secure in the global community of the 21st century? What strategy, with several concrete steps, could be used to implement each of those actions?

- 1. K-12 EDUCATION. Increase American's talent pool by vastly improving K-12 science and mathematics education
- 2. RESEARCH MONEY: Sustain and strengthen the nation's traditional commitment to long-term basic research that has the potential to be transformational to maintain the flow of new ideas that fuel the economy, provide security, and enhance the quality of life
- 3. RECRUIT FROM ABROAD: Make the United States the most attractive setting in which to study and perform research so that we can develop, recruit and retain the best and brightest students, scientists and engineers within the U.S. and throughout the world
- 4. STRENGTHEN RESEARCH INFRASTRUCTURE: Ensure that the U.S. is the premier place in the world to innovate; invest in downstream activities such as manufacturing and marking; and create high-paying jobs based on innovation by such actions as modernizing the patent system, realigning tax policies to encourage innovation, and ensuring affordable broadband access

NATIONAL ACADEMY OF SCIENCES Expanding Underrepresented Minority Participation: America's Science and And Technology Talent at the Crossroads 2011

RECOMMENDATIONS

- 1. Prepare America's children for school through preschool and early education programs that develop reading readiness, provide early mathematics skills, and introduce concepts of creativity and discovery
- 2. Increase America's talent pool by vastly improving K-12 mathematics and science education for underrepresented minorities
- 3. Improve K-12 mathematics and science education for underrepresented minorities overall by improving the preparedness of those who teach these subjects
- 4. Improve access to all postsecondary education and technical training and increase underrepresented minority student awareness of and motivation for STEM education and careers through improved information, counseling and outreach
- 5. Develop America's advance STEM workforce by providing adequate financial support to underrepresented minority students in undergraduate and graduate STEM education
- Take coordinated action to transform the nation's higher education institutions to increase inclusion of and college completion and success in STEM education for underrepresented minorities

EXECUTIVE OFFICE OF THE PRESIDENT Report to the President: Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering and Mathematics, 2012

RECOMMENDATIONS

- 1. Catalyze widespread adoption of empirically validated teaching practices
- 2. Advocate and provide support for replacing standard laboratory courses with discovery-based research courses
- 3. Launch a national experiment in postsecondary mathematics education to address the math preparation gap
- 4. Encourage partnerships among stakeholders to diversify pathways to STEM careers
- 5. Create a Presidential Council on STEM Education with leadership from the academic and business communities to provide strategic leadership for transformative and sustainable change in STEM undergraduate education

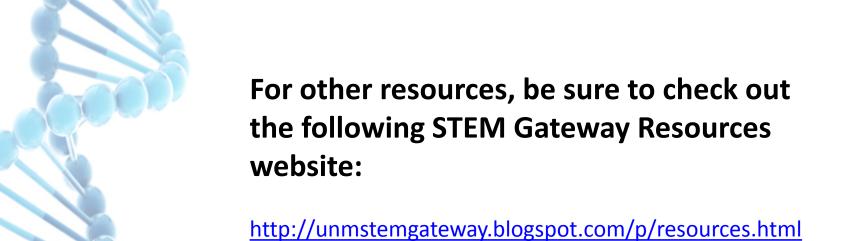
NATIONAL SCIENCE FOUNDATION Science & Engineering Indicators, 2010

PROVIDES NATIONAL AND INTERNATIONAL DATA RELATED TO:

(Chapter Two, Higher Education in Science and Engineering)

- 1. The U.S. higher education system
- 2. Undergraduate education, enrollment and degrees in the United States
- 3. Graduate education, enrollment and degrees in the United States
- 4. Postdoctoral education
- 5. International S&E education

(Chapter Three, Science and Engineering Labor Force)


- Scope of S&E workforce
- Employment patterns
- Demographics
- S&E labor market conditions
- Global S&E labor force

STATE OF NEW MEXICO Higher Education Funding Formula Technical Committee

WEBSITE, AGENDAS, PROPOSALS:

http://www.hed.state.nm.us/PR Techcomm.aspx

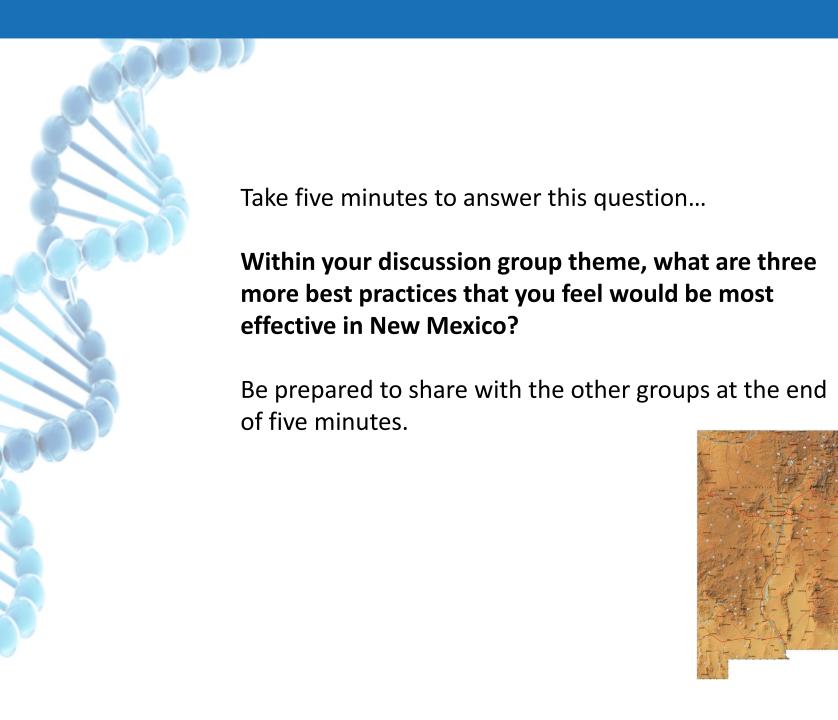
PART 3: BRAINSTORMING

CLASSROOM INSTRUCTION
AND ACADEMIC STUDENT
SUPPORT

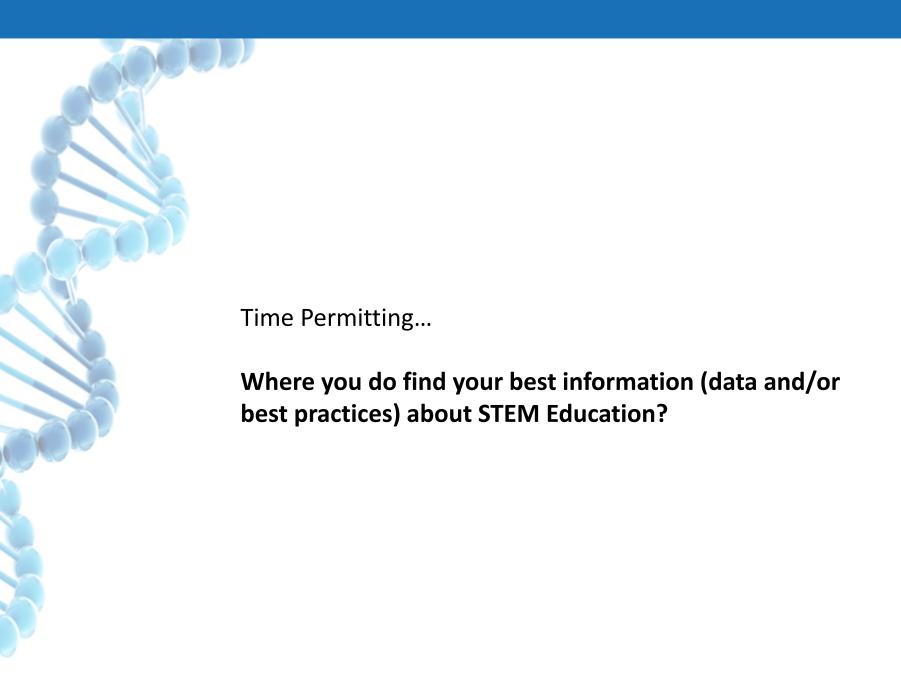
OUT OF CLASS STUDENT SUPPORT

RESEARCH AND EXPERIENTIAL LEARNING


GRADUATE STUDENT
SUPPORT



Take five minutes to answer this question...


Within your discussion group theme, what is your institution doing right now to improve STEM student achievement?

Be prepared to share with the other groups at the end of five minutes.

Everyone take three yellow sticky notes and three pink sticky notes. PINK NOTES: Place one note next to each idea that you feel would be most effective (up to three total). GREEN NOTES: Place one note next to each idea that you feel would be easiest to implement at your institution right now (up to three total).

TIM SCHROEDER

Project Director
STEM Gateway Program
University of New Mexico
timschroeder@unm.edu
505-277-1761

http://unmstemgateway.blogspot.com/